Creative Saplings

Molfraktion

september 19, 2020
No Comments

Molfraktion anvendes meget ofte ved konstruktionen af fasediagrammer. Det har en række fordele:

Differentialkvotienter kan dannes ved konstante forhold som dem ovenfor:

(∂ x 1 ∂ x 2) x 1 x 3 = – x 1 1 – x 2 {\ displaystyle \ left ({\ frac {\ partial x_ {1}} {\ partial x_ {2}}} \ right) _ {\ frac {x_ {1}} {x_ {3}}} = – {\ frac {x_ {1}} {1-x_ {2}}}}

eller

(∂ x 3 ∂ x 2) x 1 x 3 = – x 3 1 – x 2 {\ displaystyle \ left ({\ frac {\ partial x_ {3}} {\ partial x_ {2}}} \ right) _ {\ frac {x_ {1}} {x_ {3}}} = – {\ frac {x_ {3 }} {1-x_ {2}}}}

Forholdene X, Y og Z for molfraktioner kan skrives til ternære og multikomponentsystemer:

X = x 3 x 1 + x 3 Y = x 3 x 2 + x 3 Z = x 2 x 1 + x 2 {\ displaystyle {\ begin {justeret} X & = {\ frac {x_ {3}} {x_ {1} + x_ {3}}} \\ Y & = {\ frac {x_ {3}} {x_ {2} + x_ {3}}} \\ Z & = {\ frac {x_ {2}} {x_ {1} + x_ {2}}} \ end {aligned}}}

Disse kan bruges til at løse PDE som:

(∂ μ 2 ∂ n 1) n 2, n 3 = (∂ μ 1 ∂ n 2) n 1, n 3 {\ displaystyle \ left ({\ frac {\ partial \ mu _ { 2}} {\ partial n_ {1}}} \ højre) _ {n_ {2}, n_ {3}} = \ left ({\ frac {\ partial \ mu _ {1}} {\ partial n_ {2}}} \ right) _ {n_ {1}, n_ {3}} }

eller

(∂ μ 2 ∂ n 1) n 2, n 3, n 4,…, ni = (∂ μ 1 ∂ n 2) n 1, n 3, n 4,…, ni {\ displaystyle \ left ({\ frac {\ partial \ mu _ {2}} {\ partial n_ {1}}} \ right) _ {n_ {2}, n_ {3}, n_ {4}, \ ldots , n_ {i}} = \ left ({\ frac {\ partial \ mu _ {1}} {\ partial n_ {2}}} \ right) _ {n_ {1}, n_ {3}, n_ {4 }, \ ldots, n_ {i}}}

Denne lighed kan omarrangeres til at have en differentiel kvotient på molmængder eller brøk på den ene side.

(∂ μ 2 ∂ μ 1) n 2, n 3 = – (∂ n 1 ∂ n 2) μ 1, n 3 = – (∂ x 1 ∂ x 2) μ 1, n 3 {\ displaystyle \ left ({\ frac {\ partial \ mu _ {2}} {\ delvis \ mu _ {1}}} \ højre) _ {n_ {2}, n_ {3}} = – \ venstre ({\ frac {\ delvis n_ {1}} {\ delvis n_ {2}}} \ højre) _ {\ mu _ {1}, n_ {3}} = – \ venstre ({\ frac {\ delvis x_ {1}} {\ delvis x_ {2}}} \ højre) _ {\ mu _ { 1}, n_ {3}}}

eller

(∂ μ 2 ∂ μ 1) n 2, n 3, n 4,…, ni = – (∂ n 1 ∂ n 2) μ 1, n 2, n 4,…, ni {\ displaystyle \ left ({\ frac {\ partial \ mu _ {2}} {\ partial \ mu _ {1}}} \ right) _ {n_ {2}, n_ {3}, n_ {4 }, \ ldots, n_ {i}} = – \ left ({\ frac {\ partial n_ {1}} {\ partial n_ {2}}} \ right) _ {\ mu _ {1}, n_ {2 }, n_ {4}, \ ldots, n_ {i}}}

Molmængder kan elimineres ved at danne forhold:

(∂ n 1 ∂ n 2) n 3 = (∂ n 1 n 3 ∂ n 2 n 3) n 3 = (∂ x 1 x 3 ∂ x 2 x 3) n 3 {\ displaystyle \ left ({\ frac {\ partial n_ {1}} {\ partial n_ {2}}} \ højre ) _ {n_ {3}} = \ left ({\ frac {\ partial {\ frac {n_ {1}} {n_ {3}}}} {\ partial {\ frac {n_ {2}} {n_ { 3}}}}} \ højre) _ {n_ {3}} = \ venstre ({\ frac {\ partial {\ frac {x_ {1}} {x_ {3}}}} {\ partial {\ frac { x_ {2}} {x_ {3}}}} \ højre) _ {n_ {3}}}

Således bliver forholdet mellem kemiske potentialer:

(∂ μ 2 ∂ μ 1) n 2 n 3 = – (∂ x 1 x 3 ∂ x 2 x 3) μ 1 {\ displaystyle \ left ({\ frac {\ partial \ mu _ {2}} {\ partial \ mu _ {1}}} \ højre ) _ {\ frac {n_ {2}} {n_ {3}}} = – \ venstre ({\ frac {\ partial {\ frac {x_ {1}} {x_ {3}}}} {\ partial { \ frac {x_ {2}} {x_ {3}}}} \ højre) _ {\ mu _ {1}}}

Tilsvarende bliver forholdet for multikomponentsystemet

(∂ μ 2 ∂ μ 1) n 2 n 3, n 3 n 4,…, ni – 1 ni = – (∂ x 1 x 3 ∂ x 2 x 3) μ 1, n 3 n 4,…, ni – 1 ni {\ displaystyle \ left ({\ frac {\ partial \ mu _ {2}} {\ partial \ mu _ {1}}} \ right) _ {{\ frac {n_ {2}} {n_ {3} }}, {\ frac {n_ {3}} {n_ {4}}}, \ ldots, {\ frac {n_ {i-1}} {n_ {i}}}} = – \ venstre ({\ frac {\ partial {\ frac {x_ {1}} {x_ {3}}}} {\ partial {\ frac {x_ {2}} {x_ {3}}}}} til højre) _ {\ mu _ { 1}, {\ frac {n_ {3}} {n_ {4}}}, \ ldots, {\ frac {n_ {i-1}} {n_ {i}}}}}

Articles
Previous Post

Sådan bortskaffes Coleman-brændstofbeholdere

Next Post

Havremælk er den bedste erstatning for mejeri ved bagning

Skriv et svar Annuller svar

Seneste indlæg

  • Verdens bedste fotografiskoler, 2020
  • Suveræne borgere tager deres regeringsfilosofi til vejene
  • Guide til reparation af stuk reparationer
  • Muckrakers (Dansk)
  • Precision Oncology

Arkiver

  • februar 2021
  • januar 2021
  • december 2020
  • november 2020
  • oktober 2020
  • september 2020
  • Deutsch
  • Nederlands
  • Svenska
  • Norsk
  • Dansk
  • Español
  • Français
  • Português
  • Italiano
  • Română
  • Polski
  • Čeština
  • Magyar
  • Suomi
  • 日本語
  • 한국어
Proudly powered by WordPress | Theme: Fmi by Forrss.